In [1]:
import tensorflow as tf
tf.__version__
Out[1]:
In [2]:
from tensorflow.keras import datasets
mnist = datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
In [3]:
print(f'x_train shape: {x_train.shape}, type: {type(x_train)}, dtype: {x_train.dtype}')
维度扩张,可以使用如下的 np.expand_dims
, 也可以使用 x_train[..., tf.newaxis]
.
In [4]:
import numpy as np
x_train = np.expand_dims(x_train, axis=-1).astype('float32')
x_test = np.expand_dims(x_test, axis=-1).astype('float32')
In [5]:
print(f'x_train shape: {x_train.shape}, type: {type(x_train)}, dtype: {x_train.dtype}')
In [6]:
train_ds = tf.data.Dataset.from_tensor_slices((x_train,y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test,y_test)).batch(32)
In [7]:
from tensorflow.keras import Model
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = layers.Conv2D(32, 3, activation=activations.relu)
self.flatten = layers.Flatten()
self.d1 = layers.Dense(128, activation=activations.relu)
self.d2 = layers.Dense(10)
def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)
model = Model()
In [8]:
from tensorflow.keras import layers, activations
In [9]:
?layers.Conv2D