Zilliz联手英伟达发布全球首个GPU加速向量数据库!CUDA加持性能飙升50倍,未来十年或暴涨1000倍


  新智元报道  

编辑:编辑部
【新智元导读】作为大模型的「记忆体」,向量数据库重要性不言而喻。GTC 2024上,全球首个GPU加速向量数据库诞生了,由英伟达CUDA加持,性能实现50倍提升。5年前上海厂房里的一行代码,竟开启了一个时代。

在旧金山时间3月20日上午,Zilliz 与英伟达携手在 GTC 2024 大会上发布了 Milvus 2.4 版本。

这是一款革命性的向量数据库系统,它在业界首次采用了英伟达 GPU 的高效并行处理能力和 RAPIDS cuVS 库中新推出的 CAGRA(CUDA-Accelerated Graph Index for Vector Retrieval)技术,提供基于GPU的向量索引和搜索加速能力。

Milvus 2.4 的 GPU 加速性能提升效果令人惊叹。基准测试显示,与目前市面上最先进的基于CPU处理器的索引技术相比,新版 GPU 加速 Milvus 能提供高达 50 倍的向量搜索性能提升。目前,Milvus 2.4 的开源版本已经对外发布。对于希望使用全托管云数据库服务的企业用户来说,还有一个好消息,那就是 Zilliz 提供的 Milvus 商业版全托管云服务 Zilliz Cloud 计划将在今年晚些时候升级推出 GPU 加速功能。截至当前,Zilliz 已成为全球首家提供海内外多云服务的向量数据库企业。Zilliz Cloud 已经实现包括阿里云、腾讯云、AWS、谷歌云和微软云在内的全球 5 大云 13 个节点的全覆盖,除了分布在杭州、北京、深圳的 5 个国内服务区,其他 8 个节点分布在海外,包括美国的弗吉尼亚州、俄勒冈州、德国的法兰克福、新加坡等城市和地区。

Milvus 是什么?

Milvus 是一款为大规模向量相似度搜索和 AI 应用开发设计的开源向量数据库系统。它最初由 Zilliz 公司发起开发,并在 2019 年开源。2020 年,该项目加入 Linux 基金会并成功毕业。自推出以来,Milvus 在 AI 开发者社区中大受欢迎并被广泛采用。在GitHub上,Milvus 拥有超过 26,000 个星标和 260 多位贡献者,全球下载和安装量超过 2000 万次,已经成为全球使用最广泛的向量数据库之一。目前,Milvus 已经被 5,000 多家企业所采用,服务于AIGC、电子商务、媒体、金融、电信和医疗等多个行业。

部分 Milvus 企业用户列表(来源:Milvus官网)

为什么需要 GPU 加速?

在数据驱动的时代背景下,快速准确地检索大量非结构化数据对于支持前沿AI应用至关重要。无论是生成式AI、相似性搜索,还是推荐引擎、虚拟药物发现,向量数据库都已成为这些高级应用的核心技术。然而,对于实时索引和高吞吐量的需求不断挑战着基于CPU的传统解决方案。

实时索引

向量数据库通常需要持续且高速地摄取和索引新的向量数据。实时索引的能力对于保持数据库与最新数据的同步至关重要,避免产生瓶颈或积压。

高吞吐量

许多使用向量数据库的应用程序,例如推荐系统、语义搜索引擎和异常检测等,都需要实时或近实时的查询处理。高吞吐量确保向量数据库能够同时处理大量涌入的查询,为最终用户提供高性能的服务。向量数据库的核心运算包括相似度计算和矩阵运算,这些运算具有并行性高和计算密集等特点。GPU 凭借其成千上万的运算核心和强大的并行处理能力,成为了加速这些运算的理想选择。

技术架构

为了应对这些挑战,英伟达开发了CAGRA。这是一个利用GPU的高性能能力为向量数据库工作负载提供高吞吐量的GPU加速框架。接下来,我们来看看 CAGRA 是如何与 Milvus 系统整合的。Milvus 专为云原生环境设计,采用模块化设计理念,将系统分为多个组件,分别处理客户端请求、数据处理以及向量数据的存储和检索。得益于这种模块化设计,Milvus 可以轻松地更新或升级特定模块,而无需改变模块间的接口,使得在 Milvus 中集成 GPU 加速变得简单可行。

Milvus 2.4 架构图Milvus 2.4 的架构包括协调器、访问层、消息队列、工作节点和存储层等组件。工作节点进一步细分为数据节点、查询节点和索引节点。其中,索引节点负责构建索引,查询节点负责执行查询。为了充分利用GPU的加速能力,CAGRA 被集成到了 Milvus 的索引节点和查询节点中。这种集成使得计算密集型任务,如索引构建和查询处理,能够被转移到 GPU 上执行,从而利用其并行处理能力。在 Milvus 的索引节点中,CAGRA 被集成到了索引构建算法中,利用 GPU 硬件来高效地构建和管理高维向量索引,显著减少了索引大规模向量数据集所需的时间和资源。同样,在 Milvus 的查询节点中,CAGRA 被用于加速执行复杂的向量相似度查询。借助GPU的处理能力,Milvus 能够以前所未有的速度执行高维距离计算和相似性搜索,从而加快查询响应时间并提升整体吞吐量。

性能评测

在性能评估过程中,我们使用了 AWS 上的三种公开实例类型:
  • m6id.2xlarge:搭载Intel Xeon 8375C 处理器的 CPU 实例
  • g4dn.2xlarge: 配备NVIDIA T4 处理的GPU加速实例
  • g5.2xlarge:配备NVIDIA A10G 处理器的GPU加速实例
我们通过这些不同的实例类型来评估 Milvus 2.4 在不同硬件配置下的性能和效率,其中m6id.2xlarge 作为基于 CPU 处理器的性能基准,而 g4dn.2xlarge 和 g5.2xlarge 则用来评估GPU 加速的优势。

基于 AWS 的评测环境在评测中,我们选用了 VectorDBBench 的两个公开向量数据集,评估 Milvus 在不同数据量和向量维度下的性能和可扩展性:
  • OpenAI-500K-1536-dim:包含 50 万个 1,536 维的向量,由 OpenAI 语言模型生成

  • Cohere-1M-768-dim:包含 100 万个 768 维的向量,由Cohere语言模型生成

索引构建时间

在索引构建时间的评测中,我们发现对于 Cohere-1M-768-dim 数据集,使用 CPU(HNSW)的索引构建时间为 454 秒,而使用 T4 GPU(CAGRA)仅为66秒,A10G GPU(CAGRA)更是缩短到了 42 秒。对于 OpenAI-500K-1536-dim 数据集,CPU(HNSW)的索引构建时间为359秒,T4 GPU(CAGRA)为45秒,A10G GPU(CAGRA)则为22 秒。

评测索引构建时间这些结果清楚地表明,GPU 加速框架 CAGRA 在索引构建方面明显优于基于 CPU 的 HNSW,其中 A10G GPU 在两个数据集上都是最快的。与 CPU 实现相比,CAGRA 提供的 GPU 加速将索引构建时间缩短了一个数量级,展示了利用 GPU 并行性进行计算密集型向量运算的优势。

吞吐量

在吞吐量方面,我们比较了集成 CAGRA GPU 加速的 Milvus 与使用 CPU 上 HNSW 索引的标准 Milvus 实现。评估指标是每秒查询数(QPS),用于衡量查询执行的吞吐量。在向量数据库的不同应用场景中,查询的批量大小(单条查询处理的查询数量)往往不同。在测试过程中,我们采用了 1、10 和 100 这三种不同的批量大小,获取真实而全面的评测结果数据。

评测吞吐量从评估结果来看,对于批量大小为 1 的情况,T4 GPU 比 CPU 快 6.4 到 6.7 倍,A10G GPU 则快 8.3 到 9 倍。当批量大小增加到 10 时,性能提升更加显著:T4 GPU 快 16.8 到18.7倍,A10G GPU 快25.8 到 29.9 倍。当批量大小为 100 时,性能提升持续增长:T4 GPU 快 21.9 到 23.3 倍,A10G GPU 快 48.9 到 49.2 倍。这些结果表明,利用 GPU 加速向量数据库查询可以获得巨大的性能提升,尤其是对于更大的批量大小和更高维度的数据。集成 CAGRA 的 Milvus 释放了 GPU 的并行处理能力,实现了显著的吞吐量改进,非常适合要求极致性能的关键场景下的向量数据库工作负载。

开启新纪元

将英伟达 CAGRA GPU 加速框架集成到 Milvus 2.4 中,标志着向量数据库领域的一项重大突破。通过利用 GPU 的大规模并行计算能力,Milvus 在向量索引和搜索操作方面实现了前所未有的性能水平,开启了实时、高吞吐量向量数据处理的新时代。5年前, Zilliz 的工程师们在上海漕河泾的厂房里敲下了向量数据库历史上的全球第一行代码,开启了研发面向非结构化数据管理的新一代数据库的探险。今天,Zilliz 和英伟达合作推出 Milvus 2.4,展现了开放创新和社区驱动发展的力量,为向量数据库带来了 GPU 加速的新纪元。这一里程碑事件预示着又一个技术变革的来临,向量数据库有望经历类似于英伟达在过去 8 年中将 GPU 算力提高 1000 倍的指数级性能飞跃。在未来十年,我们将见证向量数据库性能的 1000 倍飞跃。这将引发一场数据处理方式的范式转变,重新定义我们处理和利用非结构化数据的能力。参考资料:https://zilliz.com/http://milvus.iohttps://www.nvidia.com/https://github.com/milvus-io/milvushttps://github.com/rapidsai/rafthttps://github.com/zilliztech/VectorDBBench


相关推荐

  • qiankun?这次我选了wujie!
  • CVPR 2024 | 一统所有目标感知任务,华科&字节提出目标感知基础模型GLEE
  • CMU朱俊彦、Adobe新作:512x512图像推理,A100只用0.11秒
  • 薪酬、人数上不封顶,这家互联网大厂正在疯抢超级毕业生
  • 72岁法国概率论大佬获阿贝尔奖,陶哲轩:他的知名度理应更高
  • 瘫痪8年后,马斯克的首个脑机接口人类植入者,正在用念力玩文明6
  • 中国富豪,减少了。。。
  • 大模型的模型融合方法
  • 211大学教授、博导SCI期刊发论文,被质疑忘删掉ChatGPT提示词…
  • 某家长:孩子博士毕业,华为 65 万年薪,公务员 18 万年薪,应该如何选择?
  • Spring Boot集成chronicle queue快速入门demo
  • 安卓和iOS都要联手了,巨头们的AI焦虑是有多严重?
  • 凯特王妃现身有说有笑,打破传言?网友:old video,背后的圣诞装饰早拆了
  • 离职后可以删除自己编写的软件吗?
  • 敲了17年代码,我现在连个面试机会都得不到
  • 八个经典的文本图结构化表示方案:兼看有趣的20240320大模型进展-从文档智能到长文本
  • 小孩都能看懂的最详细的傅立叶变换原理
  • 一个令人惊艳的 AI 开源神器!
  • Matplotlib 强势变身:6 个 Python 风格库惊艳众人
  • 关于「日志采样」的一些思考及实践