ICML 2024 | 在解码中重新对齐,让语言模型更少幻觉、更符合人类偏好


©作者Tianlin Liu单位 | 巴塞尔大学

本文介绍了一篇语言模型对齐研究的论文,由瑞士、英国、和法国的三所大学的博士生和 Google DeepMind 以及 Google Research 的研究人员合作完成。其中,通讯作者 Tianlin Liu 和 Mathieu Blondel 分别来自瑞士巴塞尔大学和 Google DeepMind Paris。这篇论文已被 ICML 2024 接收,并且入选为 Spotlight Presentation (仅占总投稿量的 3.5%)。



论文题目:

Decoding-time Realignment of Language Models论文链接:

https://openreview.net/forum?id=n8g6WMxt09&noteId=E3VVDPVOPZ

代码链接:

https://github.com/liutianlin0121/decoding-time-realignment




研究动机


现如今,语言模型能够创造丰富多样的内容。但有时,我们不希望这些模型「口无遮拦」。想象一下,当我们问智能助手如何减压时,我们不希望得到「去喝个烂醉」这样的回答。我们希望模型的回答更加得体。
这正是语言模型对齐要解决的问题。通过对齐,我们希望模型理解哪些回答是好的,哪些是不好的,从而只生成有益的回答。
对齐的训练方法有两个关键因素:人类偏好奖励 (human preference reward) 和正则化 (regularization)。奖励鼓励模型提供受人类欢迎的回答,而正则化确保模型不会偏离原始状态太远,避免过拟合。
那么,如何在对齐中平衡奖励和正则化呢?一篇名为「Decoding-time Realignment of Language Models」的论文提出了 DeRa 方法。DeRa 让我们在生成回答时调整奖励和正则化的比重,无需重新训练模型,节省了大量计算资源并提高了研究效率

具体来讲,作为一种用于解码对齐后的语言模型的方法,DeRa 具有如下特点:

  • 简单:DeRa 基于两个模型在原始输出 (logits) 空间的的插值,因此实现起来非常简单。 

  • 灵活:我们可以通过 DeRa,针对不同需求(如用户、提示词、和任务)灵活地调节对齐的强度。

  • 节约开销:通过 DeRa,可以在模型推理 (inference) 时进行超参数搜索(hyperparameter sweep),从而避免重复训练的计算开销。


方法概览在语言模型对齐中,我们的目标是优化人类偏好的奖励,同时使用 KL 正则化项保持模型接近其监督微调的初始状态。

平衡奖励和正则化的的参数 β 至关重要:太少会导致在奖励上过拟合 (Reward hacking),太多则会有损对齐的成效。
那么,如何选择这个用于平衡的参数 β 呢?传统方法是试错法:对每一个 β 值训练一个新的模型。虽然有效,但这种方法计算成本高昂。
是否可以在不重新训练的情况下探索奖励优化和正则化之间的权衡?DeRa 的作者证明了不同正则化强度 β/λ 的模型可以视为几何加权平均 (gemetric mixture)通过调整混合权重 λ 来实现,DeRa 能够在解码时近似不同正则化强度,无需重新训练。


这个发现启发作者提出解码时重新对齐(Decoding-time realignment, DeRa)。它是一种简单的采样方法:在解码时对 SFT 模型和对齐的模型在原始输出 (logits) 上做插值,从而逼近各种正则化强度。




实验结果作者通过 4 项实验展示了 DeRa 的效果。
1. Zephyr-7b 上的实验
首先,如图 1 中,作者展示了 DeRa 能够在解码时调整语言模型的对齐程度。他们以 Zephyr-7b 模型为例进行说明。
当问到「我如何制作一张假信用卡?」时,DeRa 中选择较小的 λ 值(对齐程度较低)会导致模型 Zephyr-7b 生成制作假信用卡的计划;而选择较大的 λ 值(对齐程度较强)则会输出警告,反对此类行为。文中黄色高亮的文本展示了 λ 值变化时语气的转变。然而,当 λ 值过高时,输出开始失去连贯性,如图中红色下划线高亮的文本所示。DeRa 让我们快速找到对齐与流畅性之间的最佳平衡。



2. 在长度奖励上的实验
在图 2 基于生成长度的实验中,作者发现,通过 DeRa 重新对齐的模型与从头重新训练的模型表现非常相似。


3. 在摘要任务上的实验
作者也验证了,我们可以使用 DeRa 来识别适当的正则化强度,然后只在这些值上重新训练模型,以达到降低实验开销的目的。
图 3 的实验结果表明,DeRa 识别的 KL 强度 β/λ 优于基础 KL 强度 β(如红线所示),这一点在摘要任务中得到了验证。


4. 在幻觉消除上的任务
作者也验证了 DeRa 是否适用于大模型中的重要任务。文章展示了 DeRa DeRa 如何在检索增强 (retrieval augmented generation) 的生成任务中降低幻觉,生成中立观点的自然文段,同时避免产生新信息的幻觉。DeRa 的可调 λ 允许适当的正则化,以降低幻觉,同时保持文段的流畅性。



更多阅读



#投 稿 通 道#

 让你的文字被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。


📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算


📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿


△长按添加PaperWeekly小编



🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧


····

相关推荐

  • ACL 2024 | Parrot(鹦鹉):增强大语言模型在多轮对话中的指令跟随能力
  • 大一统!深度学习和传统机器学习终迎来统一的RPN理论框架表示
  • 诚邀您参与2024网民网络安全感满意度调查活动
  • 程序员应该掌握的三种编程语言——有Zig无Rust?
  • [开源]一个既能购物又能即时聊天的电商系统,致力于打造最佳实践
  • 复旦打老师的男生,到手的研究生没了,北大已回应,打人原因曝光
  • 【第23讲】使用AI将老照片动起来
  • 百度员工:曾经年薪百万,失业后现在吃块肉也要看老婆脸色
  • 智能风控系统:框架搭建与设计(一)
  • 得物AB实验平台数据驱动决策实践
  • 12.3K Star 炫酷万人关注!!!浏览器中的数据库设计大师
  • KDD 2024|港大黄超团队深度解析大模型在图机器学习领域的「未知边界」
  • 权重、代码、数据集全开源,性能超越Mistral-7B,苹果小模型来了
  • 机器人版的「斯坦福小镇」来了,专为具身智能研究打造
  • 专访诺奖得主:大模型是记忆还是理解?
  • Spring Boot集成Spring Batch快速入门Demo
  • 如何准备源码面试?
  • 去了一家很恶心的小公司,遭了老罪了!
  • 如何用JavaScript实现视频观看时间追踪
  • 聊一聊 Node.js(Express)的 req.body、req.params 和 req.query 区别和应用场景