论文题目:
Node-oriented Spectral Filtering for Graph Neural Networks
论文作者:Shuai Zheng, Zhenfeng Zhu, Zhizhe Liu, Youru Li, Yao Zhao
作者单位:北京交通大学
源码链接:https://github.com/SsGood/NFGNN/
论文链接:https://ieeexplore.ieee.org/abstract/document/10286416/
在图机器学习领域中,同配性(homophily)一直是一个普遍的假设,即属于同一类的节点倾向于互相连接。然而,这一假设在很多真实的图相关场景中其实并不成立,蛋白质结构网络就是一个很典型的例子。
因此,研究面向异配图数据的图神经网络在近几年成为了领域内的一大主题。考虑到同配性的定义,我们提出一个观点:下游任务与构建图时所采用的先验的相关性决定了一个图的同配性程度。
具体来说,对于一个给定的拓扑结构,当其与不同下游任务的标签分布相结合时,其同配性程度可能会非常不同。例如,学术引用网络中,因为一篇论文更有可能引用研究相同或类似主题的论文,所以引文网络链接的形成与主题分类任务是强正相关的。因此,如果我们使用论文的主题作为标签,则则该网络可能是同配性的;而如果我们以论文的发布年份作为标签,引用图可能是异配性或随机的。
以上述假设看待图的同配性问题,我们会发现,在标签有限的情况下,下游任务与图结构之间的相关性是较难预测的。因此,一个自然而然的问题是:整个图中不同局部子图的同配程度是否一致?
直观上,假设不同区域之间总是存在多样的子图模式可能更为现实。因此,相比于特定于同配图或异配图的聚合设计,一种可以自适配图中不同局部同配模式的 GNN,可能是更贴近实际应用需求的。
与基于空域聚合的方法相比,基于频谱的图神经网络具有出色的理论解释性和计算效率。然而,当前基于谱滤波的方法均采用了全局共享单一滤波器的学习方式。本文中,我们基于图信号处理理论,首次尝试探索局部自适应的谱滤波学习,以解决图中的混合局部模式。
本文的主要贡献如下:
为了深入了解实际图的高阶混合模式以及 GNN 对它们的适应性,我们从子图同配随机性和近邻可聚合性两个方面进行了实证和理论分析。
受广义平移算子的启发,我们提出了一种面向节点的谱滤波 GNN,即 NFGNN。它充分考虑了过滤器定位节点的局部子图模式来估计滤波系数。
局部同配模式分析
2.1 子图同配随机性由于目标是通过节点邻域的标签一致性来分析图的局部同配模式,因此我们采用了节点同配率来分析局部同配模式。首先,我们给出一阶邻域同配率和二阶邻域同配率的节点级统计直方图的可视化。
如图 1 所示,即使在通常被认为是同配性图的 Cora 和 Citeseer 网络中,也仍然存在少量的 1 跳完全异配子图。同样,在 Cornell 和 Actor 网络中也有一些高同配率的子图。此外,对于 Cornell 和 Actor 网络,我们发现二阶邻域同配率统计直方图与一阶统计结果的显示出一定的偏移,表明每个节点关联的局部子图模式通常随着邻域范围的变化而变化。
▲ 图1:一阶邻域同配率和二阶邻域同配率的节点级统计直方图的可视化。值得注意的是,节点同配率的计算仅能简单传达邻域节点和中心节点的标签一致性,但忽略了邻域标签是呈现什么样的分布,这对局部模式分析同样重要。受信息论中香农熵的启发,我们提出使用标签熵 来衡量邻域标签分布:其中,,1e-10 是一个常数,用以避免溢出。标签熵作为节点级指标,量化了给定节点的邻域标签分布,并指示了以该节点为中心的子图的随机性。显然,当邻居节点的标签分布均匀时,标签熵趋于最大。相反,如果给定节点的邻域标签全部属于同一类,则标签熵将是最小的。▲ 图2:一阶邻域标签熵和二阶邻域标签熵的节点级统计直方图的可视化。
如图 2 所示,同配性图中的大多数节点的 较低,而异配性图中的大多数节点的 较高。此外,对于所有四个图,与 相比, 的统计直方图总体上向右移动。这些观察表明,随着邻域范围的增加,每个节点的邻居标签分布趋于均匀。更重要的是,从图 2(c)和(d)中,可以容易地发现一些明显的聚类现象,表明图中可能存在几种类型的重要局部模式。具体证明过程可见论文。
首先根据 2 跳邻域内的同配比率将节点划分为三个子集:
然后,从每个子集中随机选择 3 个节点,并绘制它们对应滤波器的频率响应曲线,如图 5 所示。可以注意到,相同颜色的曲线显示出相似的特性,而不同颜色的曲线之间存在一定的变化。滤波器的可视化结果证实了 NFGNN 的有效性,即 NFGNN 可以根据节点的局部模式自适应地学习滤波器。
▲ 图5 节点级滤波器可视化
此外,通过引入重参数化策略,NFGNN 以一种简单且有效的方式实现了节点导向的滤波。在多个真实世界的图数据集上进行的实验结果验证了 NFGNN 在当前现有方法中的卓越性能,展示了其在处理局部图模式方面的显著优势。
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧