【Python】十大Python可视化工具,太强了


今天介绍Python当中十大可视化工具,每一个都独具特色,惊艳一方。

Matplotlib

Matplotlib 是 Python 的一个绘图库,可以绘制出高质量的折线图、散点图、柱状图、条形图等等。它也是许多其他可视化库的基础。

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(010100)
y = np.sin(x)

plt.plot(x, y)
plt.show()

Seaborn

Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专门用于绘制统计图形,如热图、小提琴图、带误差线的折线图等等。

import seaborn as sns
import pandas as pd

df = pd.read_csv('data.csv')

sns.boxplot(x='day', y='total_bill', data=df)

Plotly

Plotly 是一个交互式数据可视化库,可以绘制出高质量的折线图、散点图、3D 图形等等。它支持多种编程语言,如 Python、R、JavaScript 等等。

import plotly.graph_objs as go
import numpy as np

x = np.linspace(010100)
y = np.sin(x)

fig = go.Figure(data=go.Scatter(x=x, y=y))
fig.show()

Bokeh

Bokeh 是一个交互式数据可视化库,也支持多种编程语言,如 Python、R、JavaScript 等等。它可以绘制出高质量的折线图、散点图、柱状图、条形图等等。

from bokeh.plotting import figure, show
import numpy as np

x = np.linspace(010100)
y = np.sin(x)

p = figure(title='Sine Wave')
p.line(x, y, legend_label='Sine')
show(p)

Altair

Altair 是一个基于 Vega-Lite 的 Python 可视化库,可以快速轻松地绘制出高质量的折线图、散点图、柱状图等等。

import altair as alt
import pandas as pd

df = pd.read_csv('data.csv')

alt.Chart(df).mark_bar().encode(
    x='year',
    y='sales',
    color='region'
)

ggplot

ggplot 是一个基于 R 语言中的 ggplot2 库的 Python 可视化库,可以绘制出高质量的散点图、柱状图、箱线图等等。

from ggplot import *
import pandas as pd

df = pd.read_csv('data.csv')

ggplot(df, aes(x='date', y='value', color='variable')) + \
    geom_line() + \
    theme_bw()

Holoviews

Holoviews 是一个 Python 可视化库,可以创建交互式的数据可视化,支持多种类型的可视化图形,如折线图、散点图、柱状图、热力图等等。

import holoviews as hv
import numpy as np

x = np.linspace(010100)
y = np.sin(x)

hv.extension('bokeh')
hv.Curve((x, y))

Plotnine

Plotnine 是一个基于 Python 的 ggplot2 库的可视化库,它可以创建高质量的数据可视化图形,如散点图、柱状图、线图等等。

from plotnine import *
import pandas as pd

df = pd.read_csv('data.csv')

(ggplot(df, aes(x='year', y='sales', fill='region')) +
 geom_bar(stat='identity', position='dodge'))

Wordcloud

Wordcloud 是一个用于生成词云的 Python 库,可以将文本中出现频率高的词汇以图形的方式展示出来。

from wordcloud import WordCloud
import matplotlib.pyplot as plt

text = "Python is a high-level programming language"

wordcloud = WordCloud().generate(text)

plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.show()

Networkx

Networkx 是一个用于创建、操作和可视化复杂网络的 Python 库。它支持创建多种类型的网络结构,如有向图、无向图、加权图等等。

import networkx as nx
import matplotlib.pyplot as plt

G = nx.DiGraph()

G.add_edge('A''B')
G.add_edge('B''C')
G.add_edge('C''D')
G.add_edge('D''A')

pos = nx.spring_layout(G)

nx.draw_networkx_nodes(G, pos, node_size=500)
nx.draw_networkx_edges(G, pos)
nx.draw_networkx_labels(G, pos)

plt.axis('off')
plt.show()

好啦,以上就是精心挑选的 Python 可视化库,大家最好自己动手体验一下哦!

人生苦短,我用python
往期精彩回顾



  • 交流群

欢迎加入机器学习爱好者微信群一起和同行交流,目前有机器学习交流群、博士群、博士申报交流、CV、NLP等微信群,请扫描下面的微信号加群,备注:”昵称-学校/公司-研究方向“,例如:”张小明-浙大-CV“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~(也可以加入机器学习交流qq群772479961


相关推荐

  • 【机器学习】机器学习分类模型决策边界,MLxtend轻松绘制!
  • 为什么现在很多人想读博了?读博有什么用?
  • 给你的 H5 页面加上惯性滚动吧!
  • 不用 JS,轻松锁定页面滚动!
  • RAG中的Query改写思路之查询-文档对齐评分优化:兼看昨日大模型进展总结回顾
  • 统计学入门:时间序列分析基础知识详解
  • 李飞飞创业:3 个月估值破 10 亿美元
  • CVPR 2024 录用数据出炉!这几个方向爆火 。。。
  • 假开源真噱头?Meta再陷「开源」争议,LeCun被炮轰Meta只是开放模型
  • 清华提出时间序列大模型:面向通用时序分析的生成式Transformer | ICML 2024
  • xAI创立未足年,创始工程师Kosic离职重返老东家OpenAI,巨头人才之战热度升级
  • 「数据墙」迫近?苹果OpenAI等巨头走投无路,被迫「偷师」YouTube视频!
  • 奥特曼深夜发动价格战,GPT-4o mini暴跌99%!清华同济校友立功,GPT-3.5退役
  • 13个漂亮的登录页面,附源代码地址
  • 30s到0.8s,记录一次接口优化成功案例!
  • 45K*16薪,这波跳槽不亏。。。
  • 大模型知识机理与编辑专场 | 7月23日 19:00直播
  • 公理训练让LLM学会因果推理:6700万参数模型比肩万亿参数级GPT-4
  • 15 年功臣、英伟达首席科学家在股价巅峰期黯然辞职:手握大笔财富,但我为我的工作感到遗憾
  • 经五轮面试终于拿到微信的offer,却只能无奈放弃