PyTorch团队首发技术路线图,近百页文档披露2024下半年发展方向


  新智元报道  

编辑:乔杨
【新智元导读】最近,PyTorch团队首次公布了开发路线图,由内部技术文档直接修改而来,披露了这个经典开源库下一步的发展方向。

如果你在AI领域用Python开发,想必PyTorch一定是你的老朋友之一。2017年,Meta AI发布了这个机器学习和深度学习领域的开源库,如今已经走到了第7个年头。

根据Assembly AI 2021年的统计数据,HuggingFace上最受欢迎的top 30模型都能在PyTorch上运行,有92%的模型是PyTorch专有的,这个占比让包括TensorFlow在内的一众竞争对手都望尘莫及。

就在7月10日,PyTorch的工程团队首次公开发布了他们的路线图文档,阐述2024年下半年的发展方向。

Meta共同创始人、领导PyTorch团队的Soumith Chintala在推特上官宣了这个消息。

他表示,希望公开工程师们的研发动机和目标。

「虽然所有PyTorch开发都在GitHub上公开,但各个PyTorch附属公司的团队编写的实际规划和路线图文档并不公开,因此我们决定做出改变,以提高透明度。」

PyTorch团队的技术项目经理Gott Brath也在论坛中发表了类似的声明。

我们一直在考虑,如何分享团队在PyTorch上所做的工作的路线图。我们每半年进行一次规划,因此这些是我们针对PyTorch中多个关键领域的2024年H2 OSS计划的一些公开版本。

这些文件基本就是PyTorch团队内部的文档和工作规划,删减掉了一些内容就发布出来成为路线图,其中涉及PyTorch的如下几个方面:

- 核心库与核心性能

- 分布式

- torchune、Torchrec、TorchVision

- PyTorch Edge

- 数据加载(DataLoading)

- 编译器核心及部署

- 开发者基础设施

每个文档都至少包含三个部分的内容,以OKR的思路展开:

- 背景

- Top5关注领域及目标:目标、关键结果、已知或未知风险以及相应缓解措施(最多一页)

- 提升工程水平的Top3~5个方面:BE Pillar分类、目标、指标/状态/具体目标、已知或未知风险以及缓解措施、影响/成本、优先级/信心程度(最多一页)

其中BE Pillar可以看作Meta写给开发团队的「五句箴言」,具体内容是:

Better Code, Better Doc, Empowering teams, Modern Code, Better Architecture

「最多一页」的规定不知道有没有戳到卷文档长度的开发人员,毕竟文档贵精不贵长,将众多开发需求精简到一页的内容不仅节省同事时间,也十分考验撰写者的功力。

此外,文档中也可以看出Meta开发团队的一些优秀思路,比如重视各个模块团队的协作、重视和外部合作伙伴的API集成和共同开发,重视与开源社区和开发者的互动。

当推出ExecuTorch这样的新代码库,或者想要提升PyTorch编译器影响力时,团队一般都会从两方面思路入手:一是铆足力气提升性能,把目标直接顶到SOTA;另一方面从深度集成入手,提供更多开箱即用的案例。

或许,这些都是Meta多年来在开源领域如鱼得水、风生水起的关键所在。

以下是各个文档内容的部分截取和概括。

原文地址:https://dev-discuss.pytorch.org/t/meta-pytorch-team-2024-h2-roadmaps/2226

核心库与核心性能

文档中涉及到的核心库包括TendorDict、torchao、NN、TorchRL等。

性能方面,PyTorch团队提出了在模型训练和推理方面实现SOTA性能的目标,措施包括引入架构优化技术和高性能kernel,与整个PyTorch技术栈形成搭配组合。

过去一年的时间见证了GenAI的快速发展,许多支持研究领域进行开发的外部库应运而生,但其中很多并不直接依赖PyTorch,这会威胁到PyTorch在科研领域的主导地位。

为了重新跟上节奏,PyTorch将为量化、稀疏化、MoE和低精度训练等常用开发技术提供支持,包括构建模块和API(主要集成在torchao中),帮助各类Transformer架构的模型提升性能。

torchao库可以支持研究人员在PyTorch框架内自定义高性能的dtype、layout和优化技巧,将使用范围扩展到训练、推理、调优等各种场景。

此外,核心库的更新将包括以下方面:

- 推出的自动优化库torchao已经取得了突破性的成功,下一步提升其代码组织性,并将其中的数值运算与核心库分开

- 解决TendorDict的核心模块性,支持加载/存储的序列化,并使其在eager模式下的运行速度提高2倍

- 继续上半年在内存映射加载(memory mapped load)方面的成功,继续提升模型加载/存储的性能和安全性

- 将TorchRL的开销降低50%

- 加入对NoGIL的核心支持

- 修复用户反映的TORCH_env变量不起作用的问题

文档中还提及了要实现对nn.transformer模块的弃用,表示会发布一系列教程和用例,展示如何使用torch.compile、sdpa、NJT、FlexAttention、custom_op、torchao等模块构建Transformer。

分布式

LLM的预训练通常横跨数十个甚至上千个GPU,而且由于模型的参数规模逐渐增大,推理和微调也很难用单个GPU完成。

因此,PyTorch下一步对「分布式」的布局全面涵盖了训练、推理、微调这三个环节,提出要达成超大规模分布式训练、高内存效率的微调、多主机分布式推理。

训练

PyTorch原生支持的并行模式主要包括以下几种:

- 完全分片数据并行(full sharded data parallel,FSDP)

- 混合分片数据并行(hybrid sharding data parallel,HSDP)

- 张量并行(tensor parallel,TP)

- 流水线并行(pipeline parallel,PP)

- 序列并行(sequence parallel,SP)

- 上下文并行(context parallel,CP)

PyTorch希望在TorchTitan中将各种并行方式进一步模块化,让开发者可以自由组合,根据需要实现N维并行。

文档中特别提到,对MoE和多模态这两种新兴的架构需要添加支持,比如专家并行、路由算法的优化。

除了TorchTitan本身的更新,分布式团队还需要与编译器团队进一步紧密合作,更好地与torch.compile模块集成,为大规模分布式场景带来额外的性能提升。

微调与推理

微调:联合torchtune,将FSDP2 LoRA/QLoRA方案投入使用,以及支持模型状态字典的NF4量化

推理:PP和DP已经成为分布式API的核心,下一步需要关注torchtitan的分布式推理,支持大模型PP+异步TP方式,将给出案例展示

文档中还提到,会将HuggingFace的推理API从PiPPy迁移到PyTorch(由HuggingFace完成)。

torchtune、TorchRec、TorchVision

torchtune

torchtune的推出旨在帮助用户更方便微调LLM,这也是官方给出的Llama模型微调的方案。

torchtune定义的「微调」范围非常广,主要可以概括为三类场景:

- 对特定领域数据集或者下游任务的模型适应

- 奖励和偏好建模,比如RLHF、DPO等

- 包含蒸馏与量化的训练过程

下半年的更新将支持为agent工作流进行的微调,同时着重关注微调性能的提升。

团队会与compile、core、distributed等模块进行合作,提供高效率微调,并在PyTorch生态内建立有代表性的微调性能基准。

由于torchtune也是一个较新的开源库,因此与开源社区的互动也必不可少。

文档提出发布博客文章和教程、举办技术讲座等方式,提升用户的理解;并会定义量化指标,衡量torchturn在LLM生态中的贡献份额。

除了开源社区,torchtune还会与至少一个合作伙伴集成,参与到它们的社区中,以促进torchtune的使用。

TorchVision

TorchVision作为CV领域内的绝对主宰者,技术也相对成熟,因此路线图中提出的更新很少。

团队将继续在预处理方向努力,在图像编码/解码空间中支持更多格式(如WebP、HEIC)和平台(如CUDA),并提升jpeg格式在GPU上的编码/解码性能。

TorchRec

TorchRec旨在提供大规模推荐系统中常用的稀疏性和并行性原语,将秋季推出第一个稳定版本TorchRec 1.0。

Edge

目前,开源库ExecuTorch已经推出了Alpha版本,主要依赖torch.compile和torch.export,用于支持移动设备和边缘设备(如AR/VR、可穿戴设备)上的模型分析、调试和推理。

下半年,Edge团队将推出xecuTorch的Beta版本,同时为Meta的Llama系列模型和其他开源模型提供PyTorch生态内的解决方案。

关键目标中主要涵盖两个方向。一是为设备上AI提供基础功能和可靠基础设施,包括:

- 确保C++和Python的API稳定性

- 实现一系列核心功能:支持模型压缩、代理缓存位置管理、数据和程序分离

二是为这个新生的代码库保驾护航,培育开源社区内的影响力,同时与Arm、Apple 和Qualcomm等公司保持良好合作关系。

其中社区影响力的目标甚至被量化到,要求代码在GitHub上得到3k标星,500次克隆(fork)。有兴趣的吃瓜群众可以去持续关注一下,看看团队能不能在年底完成这个OKR。

数据加载

基于Apache Arrow格式的HuggingFace datasets库凭借无内存限制的高速加载/存储,近几年异军突起,似乎抢走了PyTorch相关功能的风头。

数据加载的文档中开篇就提出了雄心壮志,要让TorchData库再次伟大,重新确立PyTorch在数据加载方面的主宰地位。

要达到这个目标,就需要让相关功能变得灵活、可扩展、高性能、高内存效率,同时实现傻瓜式操作,支持各种规模的多模态训练。

具体的更新目标包括以下几个方面:

- DataLoader的功能开发和接口都将贯彻GitHub优先的原则,DataPipes和DataLoader v2则将被逐步被弃用、删除

- 确保TorchTune、TorchTitan、HuggingFace、TorchData之间的清晰边界和良好互通性,支持多数据集、多模态数据加载

- HuggingFace使用StatefulDataLoader的API,确保兼容性,及时更新样例和测试用例

编译器核心及部署

PyTorch的编译器核心功能经过多年发展已经趋于完善,目前亟待弥补的只是对LLM和GenAI领域的更深度集成和更多优化支持。

路线图提出,要将torch.compile()函数带到LLM和GenAI的使用周期的各个方面(推理、微调、预训练),让重要模型在发行时就搭载原生的PyTorch编译。

为了实现这个目标,文档提出了很多具体措施,比如与torchtune与TorchTitan团队合作,提升编译性能,并在下半年发布至少两个高知名度模型的原生PyTorch编译版本。

此外,编译器可能添加可视化功能,在non-eager训练模式下生成表达前向计算/后向传播过程的模型图。

用户支持方面也有诸多规划,比如提升系统的监控性和可观察性,帮助户自行调试编译问题。关键目标还包括建立用户支持团队,针对几个关键领域(数据类、上下文管理等),解决开发者在GitHub等平台上发布的问题。

参考资料:

https://dev-discuss.pytorch.org/t/meta-pytorch-team-2024-h2-roadmaps/2226

https://x.com/soumithchintala/status/1811060935211049046

https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/


相关推荐

  • 败给AI八年,围棋传奇李世石仍未走出AlphaGo阴影
  • 美国启动「曼哈顿计划2.0」,AI进入奥本海默时刻?60亿砸向无人机,已有800个AI项目
  • MoE也有Scaling Law,「百万专家」利用率近100%!DeepMind华人挑战MoE极限
  • 边学边赛拿冠军!北邮学子勇夺昇腾AI原生创新算子挑战赛金奖
  • 硅谷科技圈大佬集体声援特朗普!降薪、砍福利惹众怒,工行内网号召按时下班帖走红;华为再发债10亿元;腾讯全员调薪,租房补贴进月薪
  • 82.1k star,时候换个方式学算法了!
  • PnetLab存储不足?一步一步教你如何进行扩容。
  • MotionClone:无需训练,一键克隆视频运动
  • 登顶开源AI软件工程师榜首,UIUC无Agent方案轻松解决SWE-bench真实编程问题
  • 微软开源的GraphRAG爆火,Github Star量破万,生成式AI进入知识图谱时代?
  • 赶时髦的 AIGC 营销人,如何实现「里子」与「面子」的双赢?
  • 阿里妈妈给出了什么样的赛题,被顶会NeurIPS 2024 pick了?
  • 【Python】随时撸代码,愉快滴在手机上玩Python!
  • 17个工作必备的Python自动化代码
  • 避免 Python 高级陷阱,提升你的 Python 水平
  • TaD+RAG-缓解大模型“幻觉”的组合新疗法
  • 【文末赠书】清华汪玉教授团队:首部高效模型压缩与设计专著重磅上市
  • 我是真的后悔从国家电网离职了。。
  • MySQL运行在Docker容器中会损失多少性能
  • 语义熵识破LLM幻觉!牛津大学新研究登Nature