如何优化PyTorch模型训练?

在当下技术驱动的时代,人工智能(AI)不断发展,对许多领域产生颠覆性的影响。PyTorch 作为一款开源的机器学习框架,与AI密切相关,现在可以说几乎已经占据了深度学习框架的半壁江山,成为许多企业/机构开发和部署深度学习模型的首选。


模型训练是机器学习流程中计算最密集的阶段,需要持续进行性能优化。训练过程可能会由于I/O、数据操作、GPU和CPU处理等诸多因素而变得缓慢,因此对训练性能进行调优往往既困难又耗时。


针对企业/机构进行模型训练时

效率低、成本高

可靠性低,可扩展性差

等诸多难题

我们推出第四期宝典

《PyTorch模型训练性能调优宝典》

本电子书是

解决PyTorch训练性能和效率问题的首选宝典

扫码免费下载


本宝典中介绍的技术适用于对PyTorch的基础设施及其使用的资源进行调优。这些调优技巧适用于所有模型算法,包括CNNs、RNNs、GANs、transformers(如GPT、BERT)等,且适用于所有领域,如计算机视觉、自然语言处理等。



核心要点:📌

PyTorch的基础知识,包括张量、计算图、自动微分以及神经网络模块的工作原理;

影响机器学习流程中模型训练性能的因素;

优化PyTorch模型训练的分步过程;

在数据加载、数据操作、GPU处理和CPU处理方面的最佳调优技巧,附有代码示例。通过这些技巧,平均训练epoch时长可缩短至原先的1/5-1/10;

在真实生产环境中使用Alluxio作为数据访问层为模型训练赋能的案例研究。


面向人群:🧐

适用对象包括AI/ML平台工程师、数据平台工程师、后端软件工程师、MLOps工程师、站点可靠性工程师、架构师、机器学习工程师以及任何希望掌握PyTorch性能调优技巧的专业人士。


扫码免费下载


特别感谢!

翻译支持:Roise,熊迪,Polarish,曹明

特别感谢以上4位Alluxio社区志愿者对《PyTorch模型训练性能调优宝典》翻译工作的支持!

鸣谢

👇点击“阅读原文”亦可下载

相关推荐

  • 度小满自动机器学习平台实践
  • 智能化数据平台实践
  • 复旦大学联合华为诺亚提出VidRD框架,实现迭代式的高质量视频生成
  • 获1000万美元捐款,用于代码重构、上云,论文预印版平台arXiv「好起来了」
  • 专访MIT贾皓钧&段辰儒博士:AI4S时代的化学材料发现——「AI炼金术」
  • 在RTX 4090被限制的时代下,让大模型使用RLHF更高效的方法来了
  • OpenAI终于Open一回:DALL-E 3论文公布、上线ChatGPT,作者一半是华人
  • 清华版「AutoGPT」登GitHub热榜!复杂任务轻松搞定,还能自己训练模型
  • 提示工程夭折?MIT斯坦福让大模型主动提问,自己搞明白你想要什么
  • arXiv可算有钱搞服务器了:新获1000万美元捐款,正在线火热招人
  • 清华系百亿估值大模型公司自曝:年内已融资25亿!
  • DALL·E 3关键技术公开!19页论文揭秘如何对提示词“唯命是从”
  • 没绷住,vivo提前“泄密”大模型能力
  • 分了 100 万。
  • 还原现场前端录制用户行为技术方案
  • 大厂为啥都要用Node去写中间层(BFF)呢?
  • 2023年轻型创业项目,旅游卡代理,别人旅游,你拿佣金
  • 美国芯片禁令升级,游戏显卡RTX4090全网下架
  • 使用 Hampel 进行离群点检测
  • LLM推理技术之StreamingLLM:如何拥有无限长生成能力