苹果开源7B大模型,训练过程数据集一口气全给了,网友:开放得不像苹果

一水 发自 凹非寺
量子位 | 公众号 QbitAI

苹果最新杀入开源大模型战场,而且比其他公司更开放。

推出7B模型,不仅效果与Llama 3 8B相当,而且一次性开源了全部训练过程和资源

要知道,不久前Nature杂志编辑Elizabeth Gibney还撰文批评

许多声称开源的AI模型,实际上在数据和训练方法上并不透明,无法满足真正的科学研究需求。

而苹果这次竟然来真的!!

就连NLP科学家、AutoAWQ创建者也发出惊叹:

Apple发布了一个击败Mistral 7B的模型,但更棒的是他们完全开源了所有内容,包括预训练数据集

也引来网友在线调侃:

至于这次开源的意义,有热心网友也帮忙总结了:

对于任何想要从头开始训练模型或微调现有模型的人来说,数据管理过程是必须研究的。

当然,除了OpenAI和苹果,上周Mistral AI联合英伟达也发布了一个12B参数小模型。

HuggingFace创始人表示,「小模型周」来了!

卷!继续卷!所以苹果这次发布的小模型究竟有多能打?

效果直逼Llama 3 8B

有多能打先不说,先来看Hugging Face技术主管刚“拆箱”的模型基础配置

总结下来就是:

  • 7B基础模型,在开放数据集上使用2.5T tokens进行训练

  • 主要是英文数据,拥有2048tokens上下文窗口

  • 数据集包括DCLM-BASELINE、StarCoder和ProofPile2

  • MMLU得分接近Llama 3 8B

  • 使用PyTorch和OpenLM框架进行训练

具体而言,研究团队先是提出了一个语言模型数据比较新基准 ——DCLM。

之所以提出这一基准,是因为团队发现:

由机器学习 (ML) 模型从较大的数据集中自动过滤和选择高质量数据,可能是构建高质量训练集的关键。

因此,团队使用DCLM来设计高质量数据集从而提高模型性能,尤其是在多模态领域。

思路很简单:使用一个标准化的框架来进行实验,包括固定的模型架构、训练代码、超参数和评估,最终找出哪种数据整理策略最适合训练出高性能的模型。

基于上述思路,团队构建了一个高质量数据集DCLM-BASELINE,并用它从头训练了一个7B参数模型——DCLM-7B。

DCLM-7B具体表现如何呢?

结果显示,它在MMLU基准上5-shot准确率达64%,可与Mistral-7B-v0.3(63%)和Llama 3 8B(66%)相媲美;并且在53个自然语言理解任务上的平均表现也可与Llama 3 8B相媲美,而所需计算量仅为后者的1/6。

与其他同等大小模型相比,DCLM-7B的MMLU得分超越Mistral-7B,接近Llama 3 8B。

最后,为了测试新数据集效果,有业内人士用卡帕西的llm.c训练了GPT-2 1.5B,来比较DCLM-Baseline与FineWeb-Edu这两个数据集。

结果显示DCLM-Baseline取得了更高的平均分,且在ARC(小学生科学问题推理)、HellaSwag(常识推理)、MMLU等任务上表现更好。

“小”模型成新趋势

回到开头,“小”模型最近已成新趋势。

先是HuggingFace推出了小模型家族“SmolLM”,其中包含135M、360M和1.7B型号模型。

它们在广泛的推理和常识基准上优于类似大小的模型。

然后OpenAI突然发布了GPT-4o mini,不仅能力接近GPT-4,而且价格大幅下降。

就在GPT-4o mini发布同日,Mistral AI联合英伟达发布了12B参数小模型——Mistral NeMo

从整体性能上看,Mistral NeMo在多项基准测试中,击败了Gemma 2 9B和Llama 3 8B。

所以,为啥大家都开始卷小模型了?

原因嘛可能正如smol AI创始人提醒的,虽然模型变小了,但在能力相近的情况下,小模型大大降低了成本

就像他提供的这张图,以GPT-4o mini为代表的小模型整体比右侧价格更低。

对此,我等吃瓜群众be like:

所以,你更看好哪家呢?(欢迎评论区讨论留言)

模型地址:
https://huggingface.co/apple/DCLM-7B
GitHub:
https://github.com/mlfoundations/dclm
数据集地址:
https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0

参考链接:
[1]
https://x.com/Yuchenj_UW/status/1813260100192334108
[2]https://x.com/casper_hansen_/status/1814269340100751382
[3]https://x.com/_philschmid/status/1814274909775995087
[4]https://x.com/LoubnaBenAllal1/status/1813252390692303069

量子位年度AI主题策划正在征集中!

欢迎投稿专题 一千零一个AI应365行AI落地方案

或与我们分享你在寻找的AI产品,或发现的AI新动向


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~ 

相关推荐

  • Mac装上字节豆包,艾玛!一下变AI PC了!
  • 今晚 8 点直播,欢迎来一起聊
  • 京东百万级调度系统(Buffalo)架构解密
  • 程序员最该拿的几种高含金量证书
  • MySQL 9.0 创新版现已发布!
  • 十年之后,前端开发是否进入了后 React 时代
  • 报名开启!实战派技术大佬在线编码,传授全生命周期高效开发秘籍 | Q推荐
  • 微软蓝屏至今仍未完全恢复,官方给出重启 15 次奇葩解决方案!网友:下一步会建议我检查是否插好电源
  • 我为什么不看好LLM——记过去一年实习经历有感
  • 博士申请 | 南丹麦大学方承副教授组招收机器人/机器学习方向全奖博士生
  • 可「自主进化」的Agent?首个端到端智能体符号化训练框架开源了
  • ICML 2024 | 川大发布用于开集图像复原的测试时退化适应框架
  • 从YOLOv1到YOLOv10!改进有多大?
  • 如何理解JavaScript中的Object.freeze()和Object.seal()
  • 聊一聊 Node.js V22.5 有啥重要更新
  • 又被问了,JDK 动态代理与 CGLIB 的区别?
  • 编程语言座次图,谁才是老大?
  • ECCV 2024 | 提升GPT-4V、Gemini检测任务性能,你需要这种提示范式
  • 中科大联合华为诺亚提出Entropy Law,揭秘大模型性能、数据压缩率以及训练损失关系
  • 爆火免费书《深入理解深度学习》终于出中文版了