AI视频修复速度10倍提升,过曝变色也能逐帧搞定|美图国科大新算法

BlazeBVD团队 投稿
量子位 | 公众号 QbitAI

家人们,消除“视频闪烁”(比如画面突然一白)有新招了!

回想一下,当你看一部老电影或者用手机拍摄的视频时,画面偶尔会出现闪烁或颜色不一致等现象。

为了消除这些,来自美图影像研究院、中国科学院大学,以及四川大学的研究人员提出了一种新算法

新算法“BlazeBVD”可以自动消除视频中的闪烁,而且处理速度非常快,据称比现有方法快10倍

更妙的是!这种方法甚至无需事先知道视频闪烁的具体类型或程度。

换句话说,它是“盲”的,可以应用于各种不同的视频。

这下,即使拍摄环境光线变化,或者相机硬件跟不上也无需头疼了。[doge]

目前相关论文已被计算机视觉顶会ECCV 2024接收。

感兴趣的话,咱们接着康康~

BlazeBVD如何消除视频闪烁?

首先,受经典的STE(闪烁去除方法尺度时间均衡)启发,BlazeBVD引入了直方图辅助解决方案。

图像直方图被定义为像素值的分布,它被广泛应用于图像处理,以调整图像的亮度或对比度。

打个比方,图像直方图就像是一个统计表,它告诉我们在一张照片中,不同亮度的像素有多少。

 图片由Claude 3.5 Sonnet生成

而STE通过分析视频中每一帧的直方图,然后用一种叫做高斯滤波的方法来平滑这些直方图,先初步矫正直方图分布突变的图像帧,能够让画面看起来更加稳定,减少闪烁。

虽然STE只对一些轻微的闪烁有效,但它验证了

  • 直方图比原始的像素数据更简洁,能够更有效地捕捉到视频中的亮度变化和闪烁。

  • 通过平滑直方图,可以减少视频中的闪烁现象,让视频看起来更稳定。

因此,利用STE和直方图的提示来提高盲视频去闪烁的质量和速度是可行的。

具体而言,BlazeBVD包括三个阶段。

BlazeBVD三阶段详解

就像医生治病一样,BlazeBVD会首先检查视频的每一帧。

它引入了STE对视频帧在光照空间下的直方图序列进行校正。

然后从处理过的帧中提取出重要信息,比如哪些帧闪烁最明显(奇异帧集)、哪些地方光线需要调整(滤波后的光照图),以及哪些地方曝光过度或不足(曝光图)

接下来,BlazeBVD开始进行修复

一方面,BlazeBVD使用一个叫做全局闪烁去除模块(GFRM)的工具,利用之前提取的光照图来调整整个视频的光线,确保每一帧的亮度和颜色看起来都很自然。

另一方面,对于一些特别需要关注的局部区域,比如曝光过度或不足的地方,BlazeBVD会使用局部闪烁去除模块(LFRM)。这个模块会利用光流信息(就像追踪物体在视频中的运动)来修复这些区域的细节。

完成这一步,BlazeBVD最后进行完善工作

它引入一个轻量级的时序网络(TCM),这个网络就像是视频的“美容师”,确保每一帧在视觉上都是平滑过渡的,没有突兀的变化。

为了进一步提高视频的一致性,BlazeBVD设计了一种特殊的评分系统(自适应掩模加权损失)。这个系统会给每一帧打分,确保它们在视觉上的一致性,让整个视频看起来更加流畅和自然。

至此,BlazeBVD完成了整个“诊治”流程。

实验结果

那么,BlazeBVD究竟效果如何呢?

直接看已有方法与BlazeBVD在盲视频去闪烁任务上的结果对比:

其中Deflicker为已有方法,GT(Ground Truth)表示理想的无闪烁视频,而KL散度表示处理后的视频与理想无闪烁视频之间的差异。KL数值越大,差异越大。

可以看出,BlazeBVD能很好地恢复照明直方图,同时避免出现颜色伪影和颜色失真(例如第二列男人的手臂)

再进一步和基线方法进行量化对比:

BlazeBVD在PSNR(峰值信噪比,数值越高表示视频质量越好)和SSIM(结构相似性指数,数值接近1表示视频质量越好)上得分较高,且在Ewarp(数值越低,视频越连贯一致)得分较低。

一句话,BlazeBVD超越了已有基线方法。

为了直观展现这种差别,BlazeBVD与基线方法的可视化对比如下:

消融实验也验证了BlazeBVD所设计模块的有效性:

概括而言,通过对合成视频、真实视频和生成视频的综合实验,BlazeBVD展现了优越的定性和定量结果,并且比最先进的模型推理速度快10倍。

目前相关论文已公开,感兴趣可以进一步了解。

论文:
https://arxiv.org/html/2403.06243v1

—  —


投稿请发邮件到:

ai@qbitai.com

标题注明【投稿】,告诉我们:

你是谁,从哪来,投稿内容

附上论文/项目主页链接,以及联系方式哦

我们会(尽量)及时回复你


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~ 

相关推荐

  • 给iPhone背面贴个AI录音机,生意老好了
  • 刚刚,中国IMO奥数憾失第一,五连冠统治被美国队终结
  • 数字人底层技术之6个语音合成代表项目:从GPT-SoVITS到Seed-TTS
  • Spring Boot集成starrocks快速入门Demo
  • Spring-Security 认证流程分析及多方式登录认证实践
  • NoteToMP(1.0.6)——Obsidian一键发公众号插件使用指南
  • 让 Kafka 支持队列功能:KIP-932和KMQ
  • 争夺“世界上最长的上下文窗口”背后:长上下文是否意味着 RAG 的终结?
  • 图灵奖得主回顾与展望:数据库发展 60 年,AI 颠覆在即?
  • AI集体失智!9.11比9.9大?微软回应全球死机蓝屏事件:影响850万设备;OpenAI发布GPT-4o mini | Q资讯
  • 劝各位做好失业准备,如今职场生存法则彻底变了!
  • 请慎用 Ref、Reactive!
  • 面试官:前端请求如何避免明文传输?谁沉默了,原来是我
  • 大厂人的10种结局
  • 如何在 Spring Boot 中优雅的做参数校验?
  • Ilya Sutskever 离职后首次采访:个人经历,Scaling Laws,AI幻觉
  • Kaggle竞赛宝库:Ensemble PyTorch
  • 转行做量化的几大天坑。
  • 好用!Numpy处理图像的几个小技巧
  • ICML 2024 | 在解码中重新对齐,让语言模型更少幻觉、更符合人类偏好