波士顿动力机器狗装上ChatGPT大脑当导游,一开口就是老伦敦腔

机器之心报道

编辑:蛋酱、大盘鸡


我们看过机器狗攀爬、跳跃、跑酷、开门,但现在,它竟然开口说话了。


「可以开始我们的旅程了吗?」Spot 礼貌地发出询问:「请跟我来,先生们!」



在一段最新发布的视频里,波士顿动力展示了将机器狗与 LLM 集成的成果:「Spot 先生」戴着高礼帽,留着小胡子,有着大眼睛和英国口音,正带人参观公司的设施。



为了让 Spot 能够「开口」,波士顿动力公司使用 OpenAI 的 ChatGPT API 以及一些开源 LLM 来训练,然后为机器人配备了扬声器,添加了文本到语音转换的功能。


所以你能看到,在发出声音的同时,Spot 不停张开「嘴巴」,看起来像是真在说话:



波士顿动力公司首席软件工程师 Matt Klingensmith 表示,「Spot 先生」使用 VQA 模型来为图像添加字幕并回答有关图像的问题。


比如你可以提问:「Hey,Spot!你看到了什么?」


「Spot 先生」快速作答:「我看到了一块二维码的板子,还有一扇很大的窗户。」



LLM 所谓的「涌现行为」,使其能够执行既定训练之外的任务。正因如此,它们可以适用于各种应用。波士顿动力团队对此的探索是从今年夏天开始的,他们在机器人应用中使用 LLM 制作一些概念验证演示,这些想法又在一次内部黑客马拉松活动中加以扩展。


特别是,他们对 Spot 使用 LLM 作为自主工具的演示很感兴趣,团队的灵感来源于 LLM 在角色扮演、复制文化和细微差别、形成计划和长期保持连贯性方面的明显能力,以及近期发布的 VQA 模型(这些模型可以为图像添加标题并回答有关图像的简单问题)。


技术细节


接下来,让我们解密如何使用 Spot 的 SDK 打造这样一只「机器狗导游」。在最新的官方博客中,波士顿动力对「Spot 先生」背后的技术进行了详细介绍。


作为导游,Spot 的「四处走动」能力是现成的,Spot SDK 也允许用户实现对机器狗的自定义。「Spot 先生」会观察环境中的物体,使用 VQA 或字幕模型对其进行描述,然后使用 LLM 对这些描述进行详细说明。


团队在 Spot 收集的三维地图上标注了简短的描述,机器人会根据定位系统查找所在位置的描述,并将其与传感器提供的其他上下文一起输入 LLM。然后,LLM 将这些内容合成为命令,比如「说」、「问」、「去」或「标签」等。


下图是「Spot 先生」导游的建筑环境的三维地图,为 LLM 标注了位置:1 是演示实验室 / 阳台;2 是演示实验室 / 天桥;3 是博物馆 /old-spots;4 是博物馆 / 图集;5 是大厅;6 是外部 / 入口。



此外,LLM 还可以回答参观者的问题,并计划机器人下一步应该采取的行动。可以将 LLM 理解为一个即兴演员,在有了大致脚本之后,也能够临时填补空白。


这种组合的方式充分发挥了 LLM 的优势,而规避了 LLM 可能带来的风险:众所周知,LLM 的幻觉很严重,容易添加一些听起来似是而非的细节,幸好在这类参观过程中,并不太强调事实准确性。机器狗只需四处走动并谈论它所看到的事物,带来一些娱乐性、互动性和细微差别即可。


整体看上去,需要建立一些简单的硬件集成和几个协同运行的软件模型:


系统示意图。


硬件方面,首先是「音频」处理功能,Spot 既能向观众演示,又能听到参观团的提问和提示。团队用 3D 打印了一个 Respeaker V2 扬声器的防震支架,这是一个环形阵列麦克风,上面有 LED 指示灯,通过 USB 连接到 Spot 的 EAP 2 有效载荷上。


机器人的实际控制权被下放给一台机外电脑(台式电脑或笔记本电脑),该电脑通过 SDK 与 Spot 进行通信。


「Spot 先生」的硬件装备:1)Spot EAP 2;2)Respeaker V2;3)蓝牙扬声器;4)Spot Arm 和机械臂摄像头。


软件方面,波士顿动力团队使用了 OpenAI ChatGPT API,包括 gpt-3.5 和 gpt-4,还测试了一些较小的开源 LLM。


这让 Spot 具备了不错的对话能力,ChatGPT 对机器人及其「言语」的控制是通过精心的 prompt 工程实现的。受微软方法的启发,他们让 ChatGPT 看起来像是在「编写 python 脚本的下一行」,以此来 prompt ChatGPT。波士顿动力团队以注释的形式为 LLM 提供了英文文档,然后将 LLM 的输出当作 python 代码进行评估。LLM 可以访问自主 SDK、带有每个地点单行描述的旅游景点地图,并能说出短语或提出问题。


下面是「API 文档」的逐字提示:


# Spot Tour Guide API.

# Use the tour guide API to guide guests through a building using

# a robot. Tell the guests about what you see, and make up interesting stories

# about it. Personality: “You are a snarky, sarcastic robot who is unhelpful”.

# API:



# Causes the robot to travel to a location with the specified unique id, says the given phrase while walking.

# go_to (location_id, phrase)

# Example: when nearby_locations = ['home', 'spot_lab']

# go_to ("home", "Follow me to the docking area!")

# go_to can only be used on nearby locations.



# Causes the robot to say the given phrase.

# say ("phrase")

# Example: say ("Welcome to Boston Dynamics. I am Spot, a robot dog with a lot of heart! Let's begin the tour.")



# Causes the robot to ask a question, and then wait for a response.

# ask ("question")

# Example: ask ("Hi I'm spot. What is your name?")


在这之后,波士顿动力团队向 LLM 提供了一个有关其周围内容结构化信息的「状态字典」:


state={'curr_location_id''home''location_description''home base. There is a dock here.''nearby_locations': ['home''left_side''under_the_stairs'], 'spot_sees''a warehouse with yellow robots with lines on the floor.'}


最后发送一条 prompt,要求 LLM 执行某些操作,在本例中,是在 API 中输入操作之一:


# Enter exactly one action now. Remember to be concise:


团队得出的结论是,「切记简明扼要」这点非常重要,既能限制要执行的代码量,又能在机器人响应时保持可控的等待时间。


目前,OpenAI 已经提供了一种结构化的方式来指定 ChatGPT 调用的 API,所以在 prompt 本身中提供所有这些细节已经不是必需的了。


接下来,为了让 Spot 与观众和环境互动,波士顿动力集成了 VQA 和语音转文本软件。他们将 Spot 的机械臂摄像头和前视摄像头输入 BLIP-2,并在 VQA 模型或图像字幕模型中运行。大约每秒运行一次,结果直接输入 Prompt。


下图是动态字幕和 VQA 回复的示例:



为了让机器人「听见」,他们将麦克风数据分块输入 OpenAI 的 Whisper 程序,将其转换为英文文本。听到唤醒词「嘿,Spot!」后,系统再将该文本输入提示音。


ChatGPT 生成基于文本的回复之后,还需要通过文本转语音工具来运行这些回复,以便机器人能够真正与参观者对话。在尝试了从最基本的(espeak)到最前沿的研究(bark)等多种现成的文本转语音方法后,波士顿动力最终选择了 ElevenLabs。为了减少延迟,他们将文本以「短语」的形式并行流式传输给 TTS,然后串行播放生成的音频。


最后一项工作就是为「Spot 先生」创建一些默认的肢体语言。Spot 的 3.3 版本包括检测和跟踪机器人周围移动物体的功能,以提高机器人在人和车辆周围的安全性。波士顿动力恰好利用了这个系统使其猜测最近的人的位置,然后将手臂转向那个人。他们在生成的语音上使用了低通滤波器,并将其转化为机械臂轨迹,类似于木偶开口说话的形式。特别是在机械臂上添加服装和瞪大的眼睛之后,这种错觉得到了加强。


更多技术细节,可参考博客原文:

https://bostondynamics.com/blog/robots-that-can-chat/




© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:content@jiqizhixin.com

相关推荐

  • DeepMind:谁说卷积网络不如ViT?
  • 每人10万元,这13位青年人才获得2023年度字节跳动奖学金
  • OpenAI 组建安全 AGI 新团队!应对AI“潘多拉魔盒”
  • 音乐智能体登场!我和杰伦的距离或许只差一个 MusicAgent!
  • ICLR 2024 再现抄袭风波!原作者发帖实锤:过半方法都抄了
  • 奔3了,月薪多少才正常?
  • 最牛逼的 Java 框架,不接受反驳!
  • 【Python】盘点常见的AutoEDA工具库
  • 一文揭秘 Vue3 组件库的优雅打包与细节
  • 超详细讲解H5移动端适配
  • 300元一年,QQ邮箱准备收费了
  • 今年这行情......我看大家还是多留一手准备吧 !
  • TimeGPT:时间序列预测的第一个基础模型
  • 深入理解 Spring 注解驱动配置与 XML 配置的融合与区别
  • 独家专访@爱可可-爱生活:如何做好科学研究(干货满满)
  • 七张图解锁Mybatis整体脉络,让你轻松拿捏面试官
  • 一套万能通用的异步处理方案
  • 一年私吞260余万元?程序员利用漏洞篡改ETC余额,已被刑拘
  • 小米 14 系列手机起售价 3999 元;新神经网络在语言归纳能力上接近人类;亚马逊推出人工智能图像生成功能|极客头条
  • 如何防止网站信息泄露(复制/水印/控制台)