AI足球教练上岗利物浦,射门机会提高13%!来自DeepMind,网友:这不公平

梦晨 发自 凹非寺
量子位 | 公众号 QbitAI

AI足球教练登上Nature子刊,谷歌DeepMind与利物浦队合作三年打造:

如同AlphaGo颠覆围棋一样,改变了球队制定战术的方式。

像是进攻方把球传给谁更容易创造射门机会,防守方如何调整布阵……AI轻松设计出的高效战术与真实战术难以区分,并且人类专家在90%的情况下青睐AI的建议

论文共同一作Petar Veličković表示,足球是比围棋更有挑战性的问题。

足球是动态的运动,而且有许多未观察到的因素也会影响结果。

有网友认为,“如果体育运动都能用上AI了,那么所有一切人类活动都将能够使用AI。”

也有人鼓励DeepMind不要被ChatGPT分散研究注意力,朝自己擅长的方向走下去总有一天能开发出更棒的产品。

对于合作对象选择了利物浦这回事,甚至有其它球队粉丝气不过。

猜测DeepMind创始人是不是有私心,用AI黑科技增强他自己最喜欢的球队,真的好不公平。

讲道理的话阿森纳才是主场离DeepMind总部最近的那一个(都在伦敦)。

AI吃透角球

TacticAI强在哪里?把角球这个机制给玩透了。

DeepMind团队表示,足球比赛中角球是进攻的大好时机,据统计30%的进球都来自角球。

并举例2019年欧冠半决赛,利物浦队阿诺德一个突然折返快速开球,打了对面巴萨一个措手不及,就被评为最佳角球之一,当时把梅西都看傻了。

(DeepMind里看来有不少真球迷啊)

像这样的精彩配合,不是每个球员都能做到,能做到也得看当时状态好不好。

所以TacticAI的研发目标,旨在解决三个核心问题

  • 对于给定的角球战术,会发生什么?例如,谁最有可能接球,射门机会多大?

  • 战术执行后,如何分析?例如,类似的策略在过去是否生效?

  • 如何调整策略以实现特定结果?进攻方如何增加射门机会,防守方又该如何布阵?

至于解决的如何,先来看几个数据。

首先,TacticAI能预测角球传中后,全场22个球员谁最有可能接到球准确率高达78.2%,妥妥超过人类专家。

这样就能帮助发球队员选择应该将球传给谁了。

对于进攻方来说,光把球传出去还不够,关键是要制造射门机会,TacticAI把这点也考虑到了。

通过分析接球概率和射门概率的关系,它能以71%的准确率预测一次角球是否会制造射门

更厉害的是,它还能挖掘出不同角球战术之间的内在联系,从而有针对性地提出改进措施。

最终对于进攻方来说,AI提出的战术把制造射门的概率从18%提升到31%

对于防守方来说,AI调整布阵后把对手射门的概率从75%降低到69%

就问哪个队的教练能不动心?

图神经网络+几何深度学习

那么DeepMind是如何开发出这个大杀器的呢?

数据,收集自2020-2023年间英超比赛的7000多个角球。

三个核心技术:图神经网络+几何深度学习+条件变分自编码器

首先,将每一场角球的状态表示为一个图(Graph)

其中每个球员作为一个节点(Node),节点之间的连接(Edges)表示球员间可能的互动。这种图表示法能够自然地捕捉球员间的空间关系和潜在的战术模式。

接下来,使用图神经网络(GNN)学习图表示中的特征。

GNN通过节点和边的信息传递机制,能够学习到节点的高维潜在特征如球员的角色、位置、运动状态等信息。

这里使用了经典的GAT (Graph Attention Networks) 模型,也就是用了大模型上常见的注意力机制,来增强图表示学习。

GAT由图灵奖得主Bengio团队提出,共同一作Petar Veličković也是这次TacticAI的共同一作。

为了提高数据效率,TacticAI还采用了几何深度学习来利用足球比赛中的对称性(如方形足球场地的水平和垂直对称)

通过显式地在模型中引入对称性约束,使得模型能够在面对图的对称变换时保持预测的一致性。

最后,生成组件使用了条件变分自编码器(CVAE),生成球员在特定战术下可能的位置和速度。

CVAE能够学习输入数据的潜在分布,并从中采样以生成新的数据,提出战术调整建议。

球员都得戴AR训练了?

TacticAI的潜力远不止于此,一但将这个方法扩展到其他定位球和更多战术环节,未来可能真的会出现一个通用的AI足球教练。

不过,论文中没有明确提及目前系统的运行速度。

是否能做到在比赛进行中实时分析、给出建议,是很多人关心的问题(比如CV大神谢赛宁)

广大球迷更关心的则是AI如果真的普及了,对足球比赛的观赏性是增加还是削弱?

这次研究的合作方利物浦队,没有回应是否已经在真实比赛中使用了AI建议。

不过意大利亚特兰大队情报总监很看好这项技术,认为与之前已经广泛应用的大数据分析相比,由AI提出的建议人类也能理解。

AI可以帮助我们以分块或分类的方式分析足球——而不是认为一切只是一个连续的数据流,而人类无法理解发生了什么。

总之未来发生概率较大的是,所有运动员在训练时都会带上AR眼镜了。

论文地址:
https://www.nature.com/articles/s41467-024-45965-x

参考链接:
[1]
https://deepmind.google/discover/blog/tacticai-ai-assistant-for-football-tactics
[2]https://www.ft.com/content/e5a64dd3-7fe0-4db4-9f65-6f7517c2c573
[3]https://x.com/GoogleDeepMind/status/1770121564085707082

评选报名即将截止!

2024年值得关注的AIGC企业&产品

量子位正在评选2024年最值得关注的AIGC企业、 2024年最值得期待的AIGC产品两类奖项,欢迎报名评选

评选报名截至2024年3月31日 

中国AIGC产业峰会同步火热筹备中,了解更多请戳:Sora时代,我们该如何关注新应用?一切尽在中国AIGC产业峰会

商务合作请联络微信:18600164356 徐峰

活动合作请联络微信:18801103170 王琳玉


点这里👇关注我,记得标星噢

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~ 

相关推荐

  • 旷视实战大模型:把多模态扎进行业
  • 上海率先打响AI开发者争夺战!大咖云集,先锋毕至 | 2024全球开发者先锋大会
  • 马斯克为啥开源Grok?对我们有什么影响?
  • 刚刚!奥特曼放出来了GPT-5的内容:能力提升幅度超乎想象
  • 【赠书】大语言模型训练优化秘籍
  • 比惨现场:博士读着读着导师变后妈,毕业还延期了…还有更离谱的吗?
  • 奥特曼专访自曝全新GPT-5细节:性能跃升超想象,算力足可达AGI!
  • 万字长文解析:大模型需要怎样的硬件算力
  • 扫码点餐注册后有哪些好的推广方式,点餐小程序制作划算还支持外卖
  • 大模型时代的向量数据库,入门、原理解析和应用案例
  • 良苦用心啊!我把7大跨域解决方法原理画成10张图,做成图解!
  • SpringBoot + POI-TL 操作 Word,快速生成报表,短小精悍!
  • 相比于 Node.js,Deno 和 Bun 到底能带来什么?
  • 如何减少网页卡顿
  • Vite 5.1 正式发布,性能大幅提升!
  • 如何画好一张架构图?
  • Spring Boot 实现跨域的 5 种方式,总有一种适合你,建议收藏!!
  • 工作十几年,看到这样的代码,内心五味杂陈...
  • 同事不拿年终奖就走了,我问他:年底了,为啥离职?他笑了笑:走了就少了钱, 拖下去少的可能是命,他的心情和身体健康更重要。
  • 11k star,一个强大的 Java 版爬虫框架,几行代码即可实现一个爬虫